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Introduction
o

Introduction

How does a dissipative system behave when placed in contact with
a heat bath?

Aim

To use a time-incremental variational scheme to describe such
systems as stochastic processes. Specifically, the variational
scheme will arise as a perturbation/regularization of the
deterministic variational set-up by an entropy-like term.

\

In the inertialess case, as time step | 0, we obtain deterministic
gradient flows (with variational characterization).
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Background

@ R. Jordan, D. Kinderlehrer & F. Otto
The variational formulation of the Fokker-Planck equation
SIAM J. Math. Anal. 1998

¥ K.

A phase-field model of dislocations in ductile single crystals
Calif. Inst. of Technology 2003

@ O. & R. Radovitzky 1999, O. & E.A. Repetto 1999, O. &
L. Stainier 1999... and many more
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Set-up: deterministic evolutions

o Consider a (first order) dissipative system in RY as given by
its equilibrium equations

0V (z) > —grad E(t, z),

where
e F is an energetic potential, possibly time-dependent if there is
some external loading /;
@ WU is a dissipation potential.
@ What happens when this system is placed in contact with a
heat bath?

@ Strategy: perturb/regularize the discrete-time variational
formulation of the equilibrium equations.
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Set-up: incremental variational problem

@ Time step h > 0; let t; := h.
@ Work done moving along a “nice” path 7: [t;, t;11] — RY:

W) 1= Bt alten) = Bltr(t) + [ (o).

energetic pot.

dissipative pot.

@ Approximate the “work distance” inf, W (v) by the
incremental cost/work function

C (ti, i tip1, viy1) =E(tiv1, vig1) — E(ts, ;)

¥ty — )T <7x"+1 - mz) .

tit1 — 1

@ Applying Euler-Lagrange to C gives the equilibrium equations.
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Regularized optimal transport

Heuristic definition

Given a time step h > 0, “temperature” parameter € > 0 and cost
function C, the regularized optimal transport problem is to find a
joint probability density u};%, (7, z:41) on (RV)?, with first

0 o o h’g 0o o __o oo
marginal a given density p;”*(x;), minimizing
h,e
/ C(@is Tit1)u; 5 (i, Tit1)
RN

h,e he
+eug o (T, Tiy1) log ug (w5, Ti41) dagdes 1.

Given a probability space (2, .%,P), the regularized optimal
transport chain X"¢: Ny x © — RY is the Markov chain whose
transition probabilities solve a causal sequence of such single-step
problems. (!)




ROTC

oceo

Regularized optimal transport
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Regularized optimal transport

The single-step regularized optimal transport problem extends
continuously from definition on Pj. (]RN ) to the space of all Radon
measures on RV,

Lemma (cf., e.g. Jordan-Kinderlehrer '96)

A regularized optimal transport chain has transition probabilities
P?fl(—\azi) with densities p?jfl(—\a;i) with respect to Lebesgue
measure given by

exp (—1C(wi, zit1))
/ exp (—1C(z, Tit1)) dzisr
RN

h, _
Pz‘+€1 (Tit1|z:) =
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Strategy/programme

Definition

Let X™: Q x R>o — R?Y denote the continuous, piecewise affine
interpolation

vh.e . h,e t t h,e h,e
X = Xy + (ﬁ - bJ) (X = Xl

Thus, X" is a measurable function (random variable)

X" Q — C%(Rxo; RY),

and we can consider the law (push-forward measure) ()_(h’e)*(]P’)
on the space of continuous paths in RY, take (weak) limits as
hl0&ec
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Strategy/programme

@ Get as much information as we can about the transition
densities p?_fl(—\mi).
@ Hope that the increments follow some “decent” distribution

AXM = X1 — X[ ~ Distrib (X", h,e, B, ¥).

@ Apply a central limit theorem to say something about the
distribution of the continuous-time increments as h | O:

Lt/h)-1
h, h, h, h,
X=X X0 = X0 = Y AXS 7 Normal(?,?).
i=ls/h]

@ Conclude something interesting about the limiting measure on
path space.
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An illustrative example: Ito diffusions

Relationship with noise
Why should this optimal transport scheme be considered a valid

model for OV (&) > — grad E(t,z) + “noise” 7

“Proof by example” (linear kinetics and 1to diffusions)

On RY, consider:
@ a coercive, C? energetic potential E: RY - R:
@ a viscous (i.e. 2-homogeneous), isotropic dissipative potential
U:RY SR, ¥(2) = 3|2%
The key observation about the increments is that

Xf_fl — Xih”3 ~ Normal (—h grad E(Xih’s),eh) :
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An illustrative example: Ito diffusions

Theorem (cf. Jordan-Kinderlehrer-Otto '98)

Given € > 0, let X¢ be the optimal transport chain for the
potentials on the previous slide starting at o € R™. Then

Xh,a ye
hl0

)

where ) )
{Yf = —grad B(Y{) + veWs;

06 = X0.-

le. P[X" € B] o P[Y¢ € B] for all Borel B C C°(R>; RY).
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Dry friction in a flat energetic landscape

Consider the following toy model for an inertialess slider subject to
time-dependent loading /, dissipation ¥ and a heat bath with
“temperature” e:
@ time-dependent energetic potential E(t,x) = —{(t) - x;
o Lipschitz forcing/loading ¢: [0, 7] — RY;
@ 1-homogeneous, positive-definite dissipative potential
U: RY — [0, 400);
e e.g. isotropic case V(&) = ol|z|;
@ More generally, call o := min;—; (&) the critical load.
Consider loadings ¢ with ||¢||co < o.
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Mean and variance

. . h,e _ ~he h,e
@ Consider the increment AXZ.Jrl =X, -X

@ The mean scales like €, but the variance scales like 2, and
both are independent of h:

E[AXYS X)) = E[AX] = cben(tivn);

Var [AXthl ‘Xih’e] = Var [AXthl] < const - £2;

where the effective load/drift is

Coti(tign) = Jan zexp (2 - (1) — ¥(2)) dz
eff\li+1) — f]RN exp (Z . f(ti-i-l) - \Il(z)) dz

@ Ignoring the variance part, this looks rather like an Euler
approximation for the ODE Y; = &.g(t) with time step €.
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Mean and variance

Definition

An effective kinetic potential for & is given by

Pett (t,7) = —Eet(t) - T

In the isotropic case ¥ (&) = olz| (K. '03),

@ AX;y1 is a Laplace random variable;

@ the effective load is

et (1) = Wﬁ
@ the effective kinetic potential is

(N D)
Peft (t, ) = RSO
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Why take € o< time step?

o [t sits well with comparison with the implicit Euler scheme.

@ Dimensionally, this corresponds to energy input at power ¢/h.
@ Alternatively, if one were to naively apply the central limit
theorem:
[t/h]—1
X[ xONXLt/hJ Ty = Z AX]S

[t/h]—1 lt/h]—1
~Normal [ Y E[AX[:], Z Var[AX]"S]
=0

but, as h | 0, a sum of |¢t/h] terms of order ¢

o diverges if ¢ is of order hP, p < 1;
@ converges to 0 if ¢ is of order AP, p > 1.
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Theorem: deterministic limit for flat potential

Theorem (K.-O.-S.-T. '07)

For ¢ € COL([0, T); RY) with ||{||co < o and 6 > 0, let
Y?:[0,T] — RY solve the deterministic TvP

VY = 06u(t) = —0 grad pe (£, Y7);
}/06 = Xy.

Then, for A > 0, taking € = 6h,

const - 02Th

P[HX—h,eh_Yeuéo 2)\] < 32 ,

le.,, X"%h — Y% in probability (and hence in law) in path space
CO([0,T);RY) (with the supremum norm).
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Corollary: minimum principle

Corollary (via Brézis-Ekeland principle)

For ¢ € C%L([0, T); RY) with ||{||co < o and § > 0,

X 2,0 in cO([0, T;RY),
h|0

where Y is the unique minimizer of the action functional . given
by
T .
sW= [ 2@vT)a
0

.Z(t,x,v) o= %‘v - ngﬁr(t)|2.
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The deterministic limit for flat potential

b o — os i Lt)/o
Response Y, to loading £(t) = £y sint for
¢y = 0.10 (red), , 0.90 (blue),

isotropic dissipation V(%) = o||.
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Andrade’s t/® creep law

_ length . .
Yi = corjom Tength for a material sample subjected to constant

load ¢ < yield stress of the material.

Linear strain hardening:

o = ogY.

For ¢ small in comparison to o,

200 260
oY) — 2 oV

¥, =

~~ Andrade’s creep law: strain grows like t1/3.

Hardening exponent (3 ~> creep exponent 1 + 20.
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Andrade’s t/® creep law

logY;
2.5
1 2 3 4 5 log ¢
Log-log plot of strain Y; (colour) against time t.
Yo=1,0=1,00=1; £= 0.1 (red), , 0.9 (blue).

t — t1/3 in black.
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Dry friction in a parabolic energetic landscape

Consider the the following toy model for an inertialess gradient
flow in E subject to dissipation ¥ and a heat bath with
“temperature”’ ¢

@ energetic potential: E(t,z) := 3z - Az — {(t) - z with
A = Hess(FE) symmetric and positive-definite;

o dissipative potential: U: RY — R 1-homogeneous with
critical load o = minjz—; ¥(&) > 0;

@ ‘“interesting” /admissible region B,

B(((t)) = {z € RV ||¢(t) — Az| < 0}
= A7Y(t) + A'B,(0).

l.e., the previous model with the slider restrained by a spring with
elasticity matrix A.
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For each x; € RY, the transition density p?fl(—|xi) is unimodal:
the mode is precisely the (unique) closest point of B(¢(t;+1) to z;.

h,
pi+€1 (Tit1l|z:)

2 7 Titl

p?fl(xiﬂ|xi) for z; = 0 (black), 5 (red), , 3 (blue),

e=1,0=10=0 B=(-1,1)CR.
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Mean and variance

@ Same g-¢2 scaling for mean and variance of AXthl but the
effective load is no longer independent of € or prior position.
For X/"* € B({(ti11)),

E[AX] X)) = € (i, X7°°);

const
(0‘2 — |€(ti+1) — AXZ-h’EF)

Var [AX.h’6 !Xz.h’a] <

2 2
i+1 25 +0(5 );

where

/RNzeXp (—(z- (Az — £(t)) + ¥(2) + 52 - Az)) dz

E(t,x) == :
/]RN exp (— (2 (Az — €(t)) + ¥(2) + £2- Az)) dz

e Given X; ¢ B, th+€1 has mean the nearest point of 95 and
variance of order ¢.
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Effective gradient structure

Lemma

For e > 0, A symmetric and positive-definite, £%(t, ) is the
gradient in x of

©°(t,x) :=log /]RN exp (—(z- (Az — £(t)) + ¥(2) + 52 - Az)) dz,

with respect to the the constant Riemannian metric A, i.e.

& (t,2) = —grad,y ¢°(t,2) = —A~'dgF(t, 2).

Definition

As before, call £o 1= £° the effective load and peg := ¢ the
effective kinetic potential.




Dry friction Il

ceo

Effective gradient structure

In the isotropic case V(%) = o|z|,
@ the effective load is

(N +1)(€(t) — Ax)
geﬂ(tax) = o2 _ |€(t) — A:L’|2 ;

@ the effective kinetic potential is

N+1

Oeft (t, ) = — log (02 —e(t) — Aa:\2);
@ and

et (t,x) = — grad 4 wes(t, ) = —A_ldgoeff(t,m).
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Effective gradient structure

- €9

1 -0.5 0.5 i

The effective potential g in dimensions N = 1,2 for {(t) =0,
V(&) = o|z|. Note the blow-up at the boundary of the “admissible
region”, i.e. where net force equals dissipation.
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Theorem: deterministic limit for positive-definite parabolic
potential

Theorem (K.-O.-S.-T. '07)
Let 0 > 0; let Y?: [0,T] — RY solve the deterministic VP

Yt" _ 9&)&(@ Yf) = —0grad 4 Yeft (t, Yte);
Y = o € B(£(0));

Then, for A > 0, taking e = 6h,

P[[| X" — Y92, > A] € O(h) ash L 0.

le., X"%" — Y% in probability (and hence in law) in path space
CO([0,T);RY) (with the supremum norm).
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Corollary: minimum principle

Corollary

With the same assumptions as before,

Xhon h% Y% in C°([0, T]; RY),

where Y s the unique minimizer of the action functional . given
by
T .
SN = / Z(t,Y,,Y;) dt,
0

1
.Z(t,x,v) o= 5‘1} - ngﬁ(t,az)|2.
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The deterministic gradient flow, N =1

Y, Zy

0.8
0.6
0.4

0.2

0.2 0.4 0.6 o018 it

Comparison of the limiting gradient flow Yt = —¢l5(Y;) (black)
with the “frictionless” gradient flow 7, = —AZ; (red).
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The deterministic gradient flow, N =1

02 04 06 08 1°

Yte in greyscale. From darkest to lightest: 6 =0, 1, 2,10, 50.
0 = 0 < rate-independent limit at zero temperature.
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The deterministic gradient flow, N = 2

In black, the “yield surface” 9B = 0 A=1(S'). In colour, trajectories for
Y:, t € [0,100], for various initial data. Note the approach along the
eigenvector of A~1 with largest eigenvalue.



X - €2

0.5

. 25

-1-0.750.50.25 0.250.50.75 17°¢
0. 25

In black, the “yield surface” 9B = 0 A=1(S'). In colour, trajectories for
Y:, t € [0,100], for various initial data. Note the approach along the
eigenvector of A~1 with largest eigenvalue.
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Conclusions

@ The optimal transport scheme can describe stochastic
processes such as Ito diffusions.

@ It can also describe dry-friction-like systems, at least when
inertia is neglected.

@ We extract a deterministic limit (with gradient structure and
minimum principle) from an a priori stochastic system by
exploiting the dependence of the regularization parameter on
the length of then time step.

@ The resulting evolutions encompass physical processes such as
creep.
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Directions for future/ongoing research

@ How is § = 7 related to physical temperature?

@ Energies with positive-semi-definite and/or non-constant
Hessian A7
@ Incorporation of inertial effects?
@ Heated harmonic oscillators? Belt friction?
o Otbher slipping processes, e.g. earthquakes, fluid invasion & c¢.?
@ Can the analysis be extended to infinite-dimensional and/or
curved state spaces and make better use of the general set-up
for optimal transport chains?

Despite connections with steepest descent methods, the optimal
transport framework is somewhat ad hoc: can it be justified
e.g. from wiggly energies with stochastic noise?




Conclusions/Future
oceo

Directions for future/ongoing research

Theorem (Abeyaratne-Chu-James '96; S.-T. '07)

For a “decent” potential V: R — R, let X¢ satisfy the forced
wiggly gradient flow

Xe(t) = -V'(X5(t)) — g <XT@) + U(et).

Then XO(t) := lim. o X*(t/e) satisfies the inclusion
O|X°(t)| 2 —V'(X () + £(t)

iff g: R — [—1, 1] attains its bounds “often enough” (e.g. periodic
[A.-C.-J.], or almost any sample path of doubly reflected Brownian
motion [S.-T.]).

'
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Directions for future/ongoing research

Conjecture/Hope

For “decent” potentials V, perturbations g and the right scaling
o = o(e), solutions of

X=(t)

Xe(t) = -V'(X5(t)) — g ( ) +6(t) + a(e)W (t)
converge as € | 0 to the trajectory predicted by the optimal
transport chain method — noise “activates” the system in a
deterministic way in the admissible (sticking) region.
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